Угашение ОРхарактеризуется высокой избирательностью к физическим характеристикам стимула. Величина ОР увеличивается пропорционально количеству одновременно изменённых параметров стимула. Для объяснения этого явления Е.Н. Соколов предположил, что в процессе повторения индифферентного стимула без специального подкрепления в мозге формируется его нейрональная модель. Мозг замечает малейшее отклонение от параметров повторяющегося стимула благодаря сравнению с его моделью, хранящейся в памяти - изменение интенсивности, длительности, цвета, формы, частоты и т.д. В нервной модели запечатлеваются не только элементарные, но и сложные признаки, напр. комплексы раздражителей – совместное или последовательное применение нескольких раздражителей. Исключение одного из элементов комплекса или изменение их порядка вызывают ориентировочные реакции. Нервная модель стимула многомерна, она фиксирует одновременно все его параметры, что доказывается восстановлением ОР при изменении любого физического свойства повторяющегося стимула даже в случае уменьшения интенсивности или укорочения его длительности.

Новизна как специфический тригер безусловного ОР определяется сигналом рассогласования, генерируемым при несовпадении нервной модели стимула с возбуждением от предъявляемого раздражителя. Схема взаимодействия основных функциональных блоков с нервной моделью, по Е.Н. Соколову, объясняющая угашение и восстановление ОР, включает воспринимающее устройство, исполнительное устройство ОР, блок с моделью стимула, компаратор (устройство, в котором осуществляется операция сравнения стимула с сигналом, поступающим от блока с моделью), блок активирующей системы, определяющий уровень активности исполнительного устройства ориентировочного рефлекса. По мере формирования модели она усиливает своё тормозное влияние на неспецифическую систему мозга. Торможение носит избирательный характер, оно ухудшает восприятие только повторяющегося стимула. В случае несовпадения стимула с моделью в компараторе возникает сигнал рассогласования, который активирует исполнительное устройство ОР.

Изучение нейронных коррелятов ориентировочного рефлекса выявило существование особого класса нейронов – нейронов новизны, которые были обнаружены в разных структурах мозга. Впервые нейроны новизны были найдены в зрительной покрышке лягушки Дж. Летвиным. Эти клетки переставали отвечать на повторяющееся движение зрительного объекта, совершаемое в одном и том же направлении. Изменение траектории движения восстанавливало ответ нейрона в виде спайковых разрядов. Нейроны новизны были эфферентными, а их длинные аксоны оканчивались в сетчатке. Эти нейроны сходны с «нейронами внимания», выделенными Д. Хьюбелом в слуховой коре кошки. Нейроны со сходными характеристиками были также найдены в ретикулярной формации ствола мозга кошки. Изучение неспецифического таламуса кролика показало существование особой формы нейронной реакции активации, отличной от простого учащения спайковых разрядов. Новые стимулы вызывали десинхронизацию спайковой активности нейрона, которая состояла из разрушения его пачечной активности, коррелирующей с волнами ЭЭГ, и замены её на рандоминизированные одиночные спайки, появление которых совпадало с блокадой альфа‑подобной активности. Реакция десинхронизации нейронов таламуса демонстрирует все свойства ориентировочной реакции.

Вначале формирование нервной модели стимула Е.Н. Соколов связывал с функцией корковых нейронов. Однако после открытия О.С. Виноградовой в поле САЗ гиппокампа двух групп нейронов, реакции которых обнаружили характеристики ОР (В‑нейроны, реагирующие возбуждением, и Т‑нейроны, отвечающие на новый стимул торможением), он связал нервную модель стимула с нейронами гиппокампа.

Е.Н.Соколов рассматривает эти две группы нейронов гиппокампа как «нейроны новизны» (В‑нейроны) и «нейроны тождества» (Т‑нейроны). Их совместное действие позволяет подчёркивать новые раздражители и ослаблять действие привычных стимулов за счёт противоположного влияния на активирующую и инактивирующую части модулирующей системы мозга. Формирование нервной модели определяется тем, что множество нейронов‑детекторов конвергируют на нейроны поля САЗ гиппокампа (нейроны новизны и тождества). Они создают на каждом из них универсальное рецептивное поле, охватывающее всю рецепторную поверхность животного. При действии стимула происходит селективное включение детекторов. С повторением раздражителя возбуждение детекторов сохраняется прежним. Однако меняются их синаптические контакты на нейронах гиппокампа. Веса задействованных пластических синапсов на гиппокампальных нейронах уменьшаются пропорционально силе приходящего возбуждения. В результате возбудительный ответ нейрона новизны на повторяющийся стимул подавляется и от него регистрируется лишь фоновая активность. С повторением стимула параллельно меняется и реакция нейронов тождества, с которыми детекторы связаны не возбуждающими, а тормозными пластическими синапсами. Их тормозная реакция на новый стимул постепенно уменьшается, и нейрон сохраняет свою фоновую активность. Е.Н. Соколов предположил, что реципрокные сигналы от нейронов новизны и тождества противоположно воздействуют на активирующую и синхронизирующую системы мозга. Новый раздражитель вызывает реакцию активации, так как возбуждает активирующую и тормозит синхронизирующую (инактивирующую) системы мозга. Привычный стимул перестаёт возбуждать активирующую неспецифическую систему и при этом через нейроны тождества стимулирует неспецифические тормозные влияния.

Т.о., нервная модель стимула представлена на нейронах новизны и тождества матрицами потенциированных синапсов, связанных со свойствами раздражителя и отражающими его конфигурацию. Новый стимул активирует новые синапсы нейронов новизны и тождества, ещё не подвергнувшихся пластическим перестройкам. Это определяет появление ориентировочного рефлекса за счёт возбуждения активирующей и подавления инактивирующей систем мозга. Величина ОР увеличивается пропорционально величине различия (рассогласования) между новым стимулом и сформированной нервной моделью.